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What is Algebra?

Oxford Dictionary:
”algebra,noun:
the part of mathematics in which letters and other general symbols are
used to represent numbers and quantities in formulae and equations”

Wikipedia:
”In algebra, which is a broad division of mathematics, abstract
algebra (occasionally called modern algebra) is the study of algebraic
structures. ”

What are algebraic structures then?
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What are algebraic structures?

Definition

An algebraic structure consists of a set A and a collection of operations
(µ1, ..., µn) of arities (a1, ..., an) ∈ Nn:

µk : Aak → A,

where Aak denotes the ak -fold catesian product of A with itself and A0 = ∗
is the singleton. Further we have a set of axioms, that these operations
need to satisfy.
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Examples of Algebraic structures

Groups:
G is a set, (·, 1,−1 ) are operations with arities (2, 0, 1) meaning:

· : G × G → G , 1 : {∗} → G , −1 : G → G

(g , h) 7→ g · h 1 ∈ G g 7→ g−1

satisfying associativity, unitality and inversibility

(g · h) · k = g · (h · k) 1 · g = g g · g−1 = 1

g · 1 = g g−1 · g = 1

Monoids M with operations (·, 1) and arities (2, 0) satisfying
associativity, unitality.
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Examples of Algebraic structures

rings R with operations (+, 0,−, ·, 1) and arities (2, 0, 1, 2, 0)
satisfying group axioms (+), monoid axioms (·) and distributivity.

fields F with operations (+, 0,−, ·, 1,−1 ) and arities (2, 0, 1, 2, 0, 1)
satisfying two sets of group axioms and distributivity.

lattices L with operations (∪,∩) with arities (2, 2) satisfying
absorption law.

bounded lattices L with operations (∪,>,∩,⊥) with arities
(2, 0, 2, 0) a lattice with maximum and minimum .

Boolean algebras

Vector spaces

Algebras A a vectorspace with a multiplication.

associative Algebras

...
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Equations and their solutions

From its first moments a big part of algebra was dedicated to find
solutions to (polynomial) equations.

Diophantine equations: Working over rings or particularly the
integers Z
Formulae for solutions of polynomials in degree 2,3,4

There are no Formulae for solutions of general polynomials in degree
≥ 5! (Galois theory)

Algebraic Geometry: Exploring the geometry of these solutions sets

Theorem (The Fundamental Theorem of Algebra)

Any polynomial P ∈ C[x ] with coefficients in the field of complex numbers
C of degree n ≥ 1 has a root in C.

Paul Großkopf (ULB, FRIA scholarship at FNRS) Of Shapes and Numbers September 1, 2022 6 / 47



What is Topology?

Oxford Dictionary:
”topology,noun:
the way the parts of something are arranged and related”

Wikipedia:
”In mathematics, topology (from the Greek words τoπoσ, ’place,
location’, and λoγoσ, ’study’) is concerned with the properties of a
geometric object that are preserved under continuous deformations,
such as stretching, twisting, crumpling, and bending; that is, without
closing holes, opening holes, tearing, gluing, or passing through itself.
”

Mathematically: ”Topology is the study of topological spaces and
continuous functions.”
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What are topological spaces?

Definition

A topological space is a pair (X , τ), where X is a set and τ collection of
subsets of X satisfying axioms:

1 The empty set and X itself belong to τ : ∅ ∈ τ,X ∈ τ .

2 Any finite intersection of members of τ is in τ :

A1, ...,An ∈ τ ⇒
n⋂

i=1

Ai ∈ τ

3 Any arbitrary union of members of τ is in τ :

Ai ∈ τ, i ∈ I ⇒
⋃
i∈I

Ai ∈ τ
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What are continuous maps?

Definition

Give two topological spaces (X , τ), (Y , σ) a continuous map is a map
f : X → Y such that f −1(A) ∈ τ,∀A ∈ σ.
If f is bijective and f as well as f −1 continuous, we call it a
homeomorphism. In that case we call X and Y homeomorph and write
X ∼= Y

Homeomorphy is the notion of equality in topology, as isomorphy is in
algebra.
Two homeomorphic spaces are generally speaking ”the same” space!
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Dougnuts and Coffee mugs
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Strengths and Weaknesses of Topology

Topology is bad to describe:

distances

corners or edges

size

any sort of differential structure (tangents, normals...)

Topology is good to describe:

The general shape of an object.

The number of components or holes.
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Picasso is a Topologist?
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The Homeomorphy question

Given two topological spaces X ,Y , we can ask wether they are
homeomorph.
If yes ⇒ give an explicit homeomorphism!
If no ⇒ ? We need obstructions to the existence of such a
homeomorphism!
Topology should be reasonably powerfull to distinguish objects of different
dimensionality!

Conjecture

Rn 6∼= Rm
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Spacefilling curves

Definition

Let I = [0, 1] ⊂ R be the unit interval. We call a continuous, surjective
map γ : I → I × I a spacefilling curve.

Does such a map exist? Peano, Hilbert and others began experimenting
with such curves in the end of 19.century.
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A short reminder of n-ary numbers

The way we represent any number x is by choosing a base b and digits
dk ∈ 0, 1, ...., b − 1 such that

x =
N∑

k=0

dkb
k

Particularly we use bases b = 10 (decimal), b = 2 (binary), b = 16
(hexadecimal).
In our case we need base b = 4, hence digits 0,1,2 and 3.

1 ≡ 1 5 ≡ 11 1/4 ≡ 0.1

2 ≡ 2 10 ≡ 22 1/16 ≡ 0.01

3 ≡ 3 50 ≡ 3 ∗ 16 + 2 = 302 1/3 ≡ 0.1̄

4 ≡ 10 100 ≡ 64 + 2 ∗ 16 + 4 = 1210 π ≡ 3.0210033312222....
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The Hilbert curve

Theorem

There exists a space filling curve.
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The Hilbert curve

Proof.

We disect the square I × I in 4 parts I0, I1, I2, I3. We continue this process
as indicated in the picture above to get 4n little squares Id1d2...dn with
dk ∈ {0, 1, 2, 3}. Hence for every point in I × I we get an infinite sequence
of digits d1d2....dn..... On the other hand every number x in I = [0, 1] has
a representation in base 4

x =
∞∑
k=1

dk4−k

Define γ : I → I × I by γ(x) =
⋂∞

k=1 Id1...dk the unique point with the
same digit expansion. This can be shown to be well defined. (Digit
expansions are not unique!)
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The Hilbert curve

Proof.

γ is continuous:

∀ε > 0∃δ > 0 : ∀t1, t2|t1 − t2| ≤ δ ⇒ |γ(t1)− γ(t2)| ≤ ε

Given an ε choose n such that
√

5/2n ≤ ε and let δ = 1/4n. If
|t1 − t2| ≤ 1/4n that mean that there digit expansion only varies after the
(n− 1)-th digit and the n-th digit varies at most by 1. Hence there images
are in consecutive squares of sidelength 1/2n. The diagonal of this
rectangle is

√
5/2n hence |γ(t1)− γ(12)| ≤ ε.
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n-ary numbers and fractal geometry

The Hilbert curve is a so called iterated function system, which can be
used to generate fractals. There exist a deep connection between these

shapes and number systems. For example: complex numbers in base
−i − 1 with digits 0,1 and only negative exponents look like this:

”Measure, Topology, and Fractal Geometry”, Gerald Edgar [1]
”Intersections of the Twin Dragon with rational lines”, Paul Großkopf, TU

Wien [2]
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The end of topology?

Is there a homeomorphism R→ Rm?

Theorem

R 6∼= Rm

Proof.

Suppose R ∼= Rm via a homeomorphism φ. Then R \ 0 ∼= Rm \ φ(0). But
R \ 0 is not connected, Rm \ φ(0) still is connected. A homeomorphism
should preserve these properties. Hence we get a contradiction!

This argument fails to proof Rn 6∼= Rm for n ≥ 2!
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More powerful tool

Definition

Let f , g : X → Y two continous maps. We call f and g homotopic, if
there is a continuous map H : X × I → Y such that
H(x , 0) = f (x),H(x , 1) = g(x). We call H a homotopy and write f ' g .

Proposition

Homotopy is an equivalence relation.
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Example

Example

Let X be the 1-sphere S1 = {x ∈ R2 : ||x || = 1} and Y the 2-disc
D2 = {x ∈ R2 : ||x || ≤ 1}. Let f (x) = x be the inclusion S1 ↪→ D2 and
g(x) = 0 the constant map sending everything to the origin. Then
H : S1 × I → D2 with H(x , t) = tx is a homotopy between f and g .

Paul Großkopf (ULB, FRIA scholarship at FNRS) Of Shapes and Numbers September 1, 2022 25 / 47



Homotopy equivalences

Definition

Given two topological space X ,Y . We call them homotopy equivalent ,
if there exists a maps f : X → Y and g : Y → X with fg ' Id Y and
gf ' Id X .

Example

Let X = Rn and Y = 0 the origin. Let f : X → Y be the constant zero
map and g : Y ↪→ X the inclusion. Then H(x , t) = tx is a homotopy from
Id X to gf and fg = Id Y . We call X contractible if its homotopy
equivalent to a point.
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Homotopy equivalences

Example

The annulus X = {x ∈ R2 : 1 ≤ ||x || ≤ 2} is homotopy equivalent to the
circle with radius 1.5 Y = {x ∈ R2 : ||x || = 1.5}.

Example

Let X = Rn+1 \ 0 and Y = Sn the unit sphere. Then f : X → Y with
f (x) = x/||x || and the inclusion g : Y ↪→ X form a homotopy equivalence
via

H(x , t) = tx + (1− t)
x

||x ||
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A topologists alphabet
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The fundamental group

Definition

Let f , g : I → X two continuous paths in X . We call f and g homotopic
relative to endpoints, if there is a continuous map H : I × I → X such
that H(x , 0) = f (x),H(x , 1) = g(x) and
H(0, t) = g(0) = f (0),H(1, t) = g(1) = f (1). We write f '∂I g or f ' g .

Definition

Let X be a topological space and x0 ∈ X . Let
Ω(X , x0) := {f : I → X |f (0) = f (1) = x0} the set of continuous loops in
X . Homotopy relative to endpoints induces an equivalence realtion on
Ω(X , x0) and we can define the fundamental group

π1(X , x0) := Ω(X , x0)/'
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The group operation in π1(X , x0)

Theorem

The fundamental group is a group!

We define the multiplication as the concatenation of loops. Let f , g be
two loops in X , then

g ◦ f :=

{
f (2t) t ∈ [0, 1/2]

g(2t − 1) t ∈ [1/2, 1]
(1)

Now [g ] ◦ [f ] := [g ◦ f ] for equivalence classes in π1(X , x0). The constant
loop [x0] is the unit element of this operation. The inverse is given by

f̄ (t) := f (1− t),

the path that goes in the inverse direction and [f ]−1 = [f̄ ]. This structure
can be extended to paths, that can be concatenated!
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The First Kiss

We can look at the fundamental group as an asignement from the
collection of pointed Topological spaces Top∗ to the collection of groups
Grp

(X , x0) 7→ π1(X , x0)

Further for any continuous map φ : X → Y we get a group
homomorphism π1(φ) : π1(X , x0)→ π1(Y , φ(x0)) by π1(φ)[f ] = [φf ]
Categorically speaking we have a functor between the categories Top∗ and
Grp.
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Invariance of the base point

Theorem

Let X be a pathconnected topological space and x0, y0 ∈ X . Then
π1(X , x0) ∼= π1(X , y0)

Proof.

We can choose a path g form x0 to y0. The isomorphism
π1(X , x0)→ π1(X , y0) is given by conjugation with g , meaning for any
loop f from x0 to itself we map it to the loop gfg−1 from y0 to itself. The
inverse π1(X , y0)→ π1(X , x0)is given by conjugation by g−1

We therefore can omit the base point for path connected X and write
π1(X )
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Homotopy invariance

Theorem

Let φ : X → X be homotopic to the identity φ ' Id X . Then
π1(φ) : π1(X , x0)→ π1(X , φ(x0)) is an iso.

Proof.

Let H : X × I → Y the homotopy between Id X and φ. Then
H(x0, .) : I → X is a path g in X from x0 to φ(x0). π1(φ) is given by
conjugation with this path.

π1(φ)[f ] = [φf ] = [gfg−1]

This is again an iso.
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Examples

Corrolary

Given a homotopy equivalence of path connected spaces X ' Y ,
f : X → Y and g : Y → X with fg ' Id Y and gf ' Id X , we get that

π1(X ) ∼= π1(Y )

Example

The singleton space has trivial fundamental group π1({∗}) = 1, hence any
contractible space has trivial fundamental group too. Particularly
π1(Rn) = 1.

Example

The annulus is homotopy equivalent to the circle hence they have the
same fundamental group. Further: π1(Rn+1 \ 0) = π1(Sn).
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The fundamental group of the circle

Theorem

π1(S1) = Z

Proof.

We show this in two step:

1 Any loop is homotopic to zn : t 7→ e2nπit , for some n ∈ Z.
(Surjective)

2 The zn, zm are not homotopic for n 6= m. (Injective)
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The fundamental group of the circle

Proof.

Let U1 = {(x1, x2) ∈ S1 : x2 ≥ 0} and U2 = {(x1, x2) ∈ S1 : x2 ≤ 0}, hence
U1 ∩ U2 = {(1, 0), (−1, 0)}. Let f : I → S1 be a loop based at (1, 0) then
I can be disected into n subintervals Ik = [tk , tk+1] such that:

f |Ik has image either in U1 or U2

The images of two consecutive intervals only intersect in
{(1, 0), (−1, 0)}

Hence f can be written as the product of paths fn · · · f2f1.
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The fundamental group of the circle

Proof.

These paths fn are maps I → Ui
∼= I so there are only 6 possible homotopy

types:

Constant maps to (1, 0) or (−1, 0) denoted by 1

A simple path in U1 from (1, 0) to (−1, 0) or its inverse denoted by δ1

ad δ−1
1 .

A simple path in U2 from (−1, 0) to (1, 0) or its inverse denoted by δ2

ad δ−1
2 .

Notice that [δ2δ1] = [z1]. Since paths can only concatenated if they meet
in the same point [f ] can be simplified to either 1, [δ2δ1 · · · δ2δ1] or
[δ−1

1 δ−1
2 · · · δ−1

1 δ−1
2 ] hence there exists a number n ∈ Z such that

[f ] ' [zn].
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The fundamental group of the circle

Proof.

To show that these simple loops are not homotopic in S1 we use covering
spaces and liftings. Without proof we use that the map exp : t 7→ e2πit

maps R onto S1 and for any loop f based at (1, 0) we get a unique map
f̃ : I → R such that f̃ (0) = 0 and exp ◦f̃ = f . Particularly f̃ (1) ∈ Z.
Further homotopic loops are maped to homotopic paths up to Endpoints.
It is easy to compute that zn is lifted to multiplication by n hence
z̃n(1) = n. Therefore zm ' zn implies z̃m ' z̃n and particularly
z̃m(1) = m = n = z̃n(1).
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The fundamental group of higher spheres

Theorem

π1(Sn) = 1, n ≥ 2

Proof.

Let f be a loop in Sn and x ∈ Sn not in the image of f . Then
Sn \ {x} ∼= Rn by stereographical projection. We know that π1(Rn) = 1,
hence f is homotopic to the constant loop in Sn \ {x}. Therefore it is also
homotopic to the constant loop in Sn.

Notice that we cheated here by assuming f (I ) 6= Sn! Since we already saw
space filling curves this can be the case, but we always can homotopically
deform any curve away from a small circle.
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A step closer

Theorem

R2 6∼= Rm,m ≥ 3

Proof.

Suppose R2 ∼= Rm via a homeomorphism φ. Then R2 \ 0 ∼= Rm \ φ(0).
But R2 \ 0 ≡ S1 has nontrivial fundamental group, Rm \ φ(0) ≡ Sm−1 has
trivial fundamental group. A homeomorphism should preserve these
properties. Hence we get a contradiction!

This argument fails to proof Rn 6∼= Rm for n ≥ 3! ⇒ Use Higher
Homotopy groups!
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The Marriage

The techniques developed here can be extended in the field of algebraic
topology. It explores higher homotopy groups which can be seen as
homtopy types of maps Sn → X generalizing loops.
A more abstract, but more computable approach is homology. Here we
also have a functor form Top to an algebraic category like groups Grp or
algebras Alg .
Further beautiful things like cohomology, stable homology, spectral
sequences, K-Theory....
”Homotopical Topology”, Anatoli Formenko, Dimitri Fuchs, Springer
Verlag.
”Algebraic Topology”, Allen Hatcher:
https://pi.math.cornell.edu/ hatcher/AT/AT.pdf
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The higher homotopy groups of spheres
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The homotopical proof of the fundamental theorem of
Algebra

Theorem (The Fundamental Theorem of Algebra)

Any polynomial P ∈ C[x ] with coefficients in the field of complex numbers
C of degree n ≥ 1 has a root in C.

We proof this indirectely. So assuming the image of P is a subset of C \ 0
we consider restrictions of P to concentric circles with radius R.
P|CR

: CR → C \ 0 can be considered a loop in C \ 0 ∼= R2 \ (1, 0) ' S1.
We therefore want use the properties of the fundamental group π1(S) ∼= Z.

Animation in Matematica
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The homotopical proof of the fundamental theorem of
Algebra

Proof.

Let wlog. P(z) = zn + ...+ a1z + a0 and suppose that Im (P) ⊂ C \ 0.
Let CR := {x ∈ C : |x | = R} and PR(t) := P(R · z(t)) the loop defined by
the image of PCR

, the restriction of the polynomial to this circle. Since
polynomial eventually behave like their leading term we want to proof that
there is an R sufficiently large such that PR ' zn. Let R ∈ R such that for
all |z | = R we have |z |n−j > 2n|aj |. Equivalentely

|zn|
2n

> |ajz j |
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The homotopical proof of the fundamental theorem of
Algebra

Proof.

Hence

|zn|
2

> |an−1z
n−1|+ ...+ |a1z |+ |a0| ≥ |an−1z

n−1 + ...+ a1z + a0|

Then for |z | = R

|P(z)| = |zn + ...+ a1z + a0|
≥ |zn| − |an−1z

n−1 + ...+ a1z + a0|

=
|zn|

2
+

(
|zn|

2
− |an−1z

n−1 + ...+ a1z + a0|
)

>
|zn|

2
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The homotopical proof of the fundamental theorem of
Algebra

Proof.

We define the homotopy H : I × I → C by
H(x , t) = tRnzn(x) + (1− t)PR(x) where zn(x) := e2πinx . Now

|H(x , t)| = |(Rnzn + ...+ a1Rz + a0)

− t(an−1R
n−1zn−1 + ...+ a1Rz + a0)|

≥ |Rn|
2
− |an−1R

n−1zn−1 + ...+ a1Rz + a0|
> 0

So this is a homotopy from Rnzn to PR in C \ 0 ' S1! Hence
[PR ] = n ∈ π1(S) ∼= Z.
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The homotopical proof of the fundamental theorem of
Algebra

Proof.

On the other hand PR is homotopic to the constant map a0 by
H(x , t) = P(tR · z(x)) because P is continuous and we assumed that it has
no roots. Therefore [PR ] = 0 ∈ π1(S) hence we get a contradiction.
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Thank you for your attention!
I am looking forward to your questions!
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