Of Shapes and Numbers A love story between Topology and Algebra

Paul Großkopf

ULB, FRIA scholarship at FNRS

September 1, 2022

Paul Großkopf (ULB, FRIA scholarship at FN

Of Shapes and Numbers

What is Algebra?

- Oxford Dictionary:
 - "algebra,noun:

the part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulae and equations"

• Wikipedia:

"In algebra, which is a broad division of mathematics, **abstract algebra** (occasionally called modern algebra) is the study of algebraic structures. "

• What are algebraic structures then?

What are algebraic structures?

Definition

An **algebraic structure** consists of a set *A* and a collection of **operations** $(\mu_1, ..., \mu_n)$ of arities $(a_1, ..., a_n) \in \mathbb{N}^n$:

$$\mu_k: A^{a_k} \to A,$$

where A^{a_k} denotes the a_k -fold catesian product of A with itself and $A^0 = *$ is the singleton. Further we have a set of **axioms**, that these operations need to satisfy.

Examples of Algebraic structures

• Groups:

G is a set, $(\cdot, 1, -1)$ are operations with arities (2, 0, 1) meaning:

$$egin{array}{lll} \cdot : \end{array} G imes G o G, & 1 : \{*\} o G, & ^{-1} : \end{array} G o G \ (g,h) \mapsto g \cdot h & 1 \in G & g \mapsto g^{-1} \end{array}$$

satisfying associativity, unitality and inversibility

$$(g \cdot h) \cdot k = g \cdot (h \cdot k)$$
 $1 \cdot g = g$ $g \cdot g^{-1} = 1$
 $g \cdot 1 = g$ $g^{-1} \cdot g = 1$

• Monoids *M* with operations (·, 1) and arities (2, 0) satisfying associativity, unitality.

Examples of Algebraic structures

- rings R with operations (+,0,-,·,1) and arities (2,0,1,2,0) satisfying group axioms (+), monoid axioms (·) and distributivity.
- fields *F* with operations (+, 0, -, ·, 1,⁻¹) and arities (2, 0, 1, 2, 0, 1) satisfying two sets of group axioms and distributivity.
- lattices L with operations (∪, ∩) with arities (2, 2) satisfying absorption law.
- bounded lattices *L* with operations (\cup, \top, \cap, \bot) with arities (2, 0, 2, 0) a lattice with maximum and minimum .
- Boolean algebras
- Vector spaces
- Algebras A a vectorspace with a multiplication.
- associative Algebras
- ...

イロト 不得 トイヨト イヨト 二日

Equations and their solutions

From its first moments a big part of algebra was dedicated to find solutions to (polynomial) equations.

- Diophantine equations: Working over rings or particularly the integers $\ensuremath{\mathbb{Z}}$
- Formulae for solutions of polynomials in degree 2,3,4
- There are no Formulae for solutions of general polynomials in degree $\geq 5!$ (Galois theory)
- Algebraic Geometry: Exploring the geometry of these solutions sets

Theorem (The Fundamental Theorem of Algebra)

Any polynomial $P \in \mathbb{C}[x]$ with coefficients in the field of complex numbers \mathbb{C} of degree $n \ge 1$ has a root in \mathbb{C} .

< □ > < □ > < □ > < □ > < □ > < □ >

What is Topology?

• Oxford Dictionary:

"topology,noun:

the way the parts of something are arranged and related"

• Wikipedia:

"In mathematics, **topology** (from the Greek words $\tau o \pi o \sigma$, 'place, location', and $\lambda o \gamma o \sigma$, 'study') is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself."

• Mathematically: "Topology is the study of **topological spaces** and continuous functions."

What are topological spaces?

Definition

A **topological space** is a pair (X, τ) , where X is a set and τ collection of subsets of X satisfying axioms:

- **1** The empty set and X itself belong to τ : $\emptyset \in \tau, X \in \tau$.
- 2 Any finite intersection of members of τ is in τ :

$$A_1,...,A_n\in\tau\Rightarrow\bigcap_{i=1}^nA_i\in\tau$$

③ Any arbitrary union of members of τ is in τ :

$$A_i \in \tau, i \in I \Rightarrow \bigcup_{i \in I} A_i \in \tau$$

What are continuous maps?

Definition

Give two topological spaces $(X, \tau), (Y, \sigma)$ a **continuous map** is a map $f: X \to Y$ such that $f^{-1}(A) \in \tau, \forall A \in \sigma$. If f is bijective and f as well as f^{-1} continuous, we call it a **homeomorphism**. In that case we call X and Y **homeomorph** and write $X \cong Y$

Homeomorphy is the notion of equality in topology, as isomorphy is in algebra.

Two homeomorphic spaces are generally speaking "the same" space!

Dougnuts and Coffee mugs

э

< 1[™] >

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Strengths and Weaknesses of Topology

Topology is bad to describe:

- distances
- corners or edges
- size
- any sort of differential structure (tangents, normals...)

Topology is good to describe:

- The general shape of an object.
- The number of components or holes.

Picasso is a Topologist?

э

イロト イヨト イヨト

The Homeomorphy question

Given two topological spaces X, Y, we can ask wether they are homeomorph.

If yes \Rightarrow give an explicit homeomorphism!

If no \Rightarrow ? We need obstructions to the existence of such a homeomorphism!

Topology should be reasonably powerfull to distinguish objects of different dimensionality!

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Spacefilling curves

Definition

Let $I = [0, 1] \subset \mathbb{R}$ be the unit interval. We call a continuous, surjective map $\gamma : I \to I \times I$ a spacefilling curve.

Does such a map exist? Peano, Hilbert and others began experimenting with such curves in the end of 19.century.

Paul Großkopf (ULB, FRIA scholarship at FN

September 1, 2022 17 / 47

æ

A short reminder of *n*-ary numbers

The way we represent any number x is by choosing a base b and digits $d_k \in 0, 1, ..., b-1$ such that

$$x = \sum_{k=0}^{N} d_k b^k$$

Particularly we use bases b = 10 (decimal), b = 2 (binary), b = 16 (hexadecimal).

In our case we need base b = 4, hence digits 0,1,2 and 3.

$1\equiv 1$	$5\equiv 11$	$1/4\equiv 0.1$
$2\equiv 2$	$10 \equiv 22$	$1/16\equiv0.01$
$3\equiv3$	$50 \equiv 3*16 + 2 = 302$	$1/3\equiv 0.ar{1}$
$4 \equiv 10$	$100 \equiv 64 + 2 * 16 + 4 = 1210$	$\pi \equiv 3.0210033312222$

The Hilbert curve

Theorem

There exists a space filling curve.

э

The Hilbert curve

Proof.

We disect the square $I \times I$ in 4 parts I_0, I_1, I_2, I_3 . We continue this process as indicated in the picture above to get 4^n little squares $I_{d_1d_2...d_n}$ with $d_k \in \{0, 1, 2, 3\}$. Hence for every point in $I \times I$ we get an infinite sequence of digits $d_1d_2....d_n...$. On the other hand every number x in I = [0, 1] has a representation in base 4

$$x = \sum_{k=1}^{\infty} d_k 4^{-k}$$

Define $\gamma: I \to I \times I$ by $\gamma(x) = \bigcap_{k=1}^{\infty} I_{d_1...d_k}$ the unique point with the same digit expansion. This can be shown to be well defined. (Digit expansions are not unique!)

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Hilbert curve

Proof.

 γ is continuous:

$$\forall \epsilon > \mathsf{0} \exists \delta > \mathsf{0} : \forall t_1, t_2 | t_1 - t_2 | \leq \delta \Rightarrow |\gamma(t_1) - \gamma(t_2)| \leq \epsilon$$

Given an ϵ choose n such that $\sqrt{5}/2^n \leq \epsilon$ and let $\delta = 1/4^n$. If $|t_1 - t_2| \leq 1/4^n$ that mean that there digit expansion only varies after the (n-1)-th digit and the n-th digit varies at most by 1. Hence there images are in consecutive squares of sidelength $1/2^n$. The diagonal of this rectangle is $\sqrt{5}/2^n$ hence $|\gamma(t_1) - \gamma(1_2)| \leq \epsilon$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

n-ary numbers and fractal geometry

The Hilbert curve is a so called **iterated function system**, which can be used to generate fractals. There exist a deep connection between these shapes and number systems. For example: complex numbers in base

-i-1 with digits 0,1 and only negative exponents look like this:

"Measure, Topology, and Fractal Geometry", Gerald Edgar [1] "Intersections of the Twin Dragon with rational lines", Paul Großkopf, TU Wien [2]

The end of topology?

Is there a homeomorphism $\mathbb{R} \to \mathbb{R}^m$?

Theorem	
	$\mathbb{R} \not\cong \mathbb{R}^m$

Proof.

Suppose $\mathbb{R} \cong \mathbb{R}^m$ via a homeomorphism ϕ . Then $\mathbb{R} \setminus 0 \cong \mathbb{R}^m \setminus \phi(0)$. But $\mathbb{R} \setminus 0$ is not connected, $\mathbb{R}^m \setminus \phi(0)$ still is connected. A homeomorphism should preserve these properties. Hence we get a contradiction!

This argument fails to proof $\mathbb{R}^n \ncong \mathbb{R}^m$ for $n \ge 2!$

More powerful tool

Definition

Let $f, g: X \to Y$ two continous maps. We call f and g homotopic, if there is a continuous map $H: X \times I \to Y$ such that H(x, 0) = f(x), H(x, 1) = g(x). We call H a homotopy and write $f \simeq g$.

Proposition

Homotopy is an equivalence relation.

Example

Example

Let X be the 1-sphere $\mathbb{S}^1 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$ and Y the 2-disc $\mathbb{D}^2 = \{x \in \mathbb{R}^2 : ||x|| \le 1\}$. Let f(x) = x be the inclusion $\mathbb{S}^1 \hookrightarrow \mathbb{D}^2$ and g(x) = 0 the constant map sending everything to the origin. Then $H : \mathbb{S}^1 \times I \to \mathbb{D}^2$ with H(x, t) = tx is a homotopy between f and g.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homotopy equivalences

Definition

Given two topological space X, Y. We call them **homotopy equivalent**, if there exists a maps $f : X \to Y$ and $g : Y \to X$ with $fg \simeq Id_Y$ and $gf \simeq Id_X$.

Example

Let $X = \mathbb{R}^n$ and Y = 0 the origin. Let $f : X \to Y$ be the constant zero map and $g : Y \hookrightarrow X$ the inclusion. Then H(x, t) = tx is a homotopy from Id X to gf and $fg = Id_Y$. We call X **contractible** if its homotopy equivalent to a point.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homotopy equivalences

Example

The annulus $X = \{x \in \mathbb{R}^2 : 1 \le ||x|| \le 2\}$ is homotopy equivalent to the circle with radius 1.5 $Y = \{x \in \mathbb{R}^2 : ||x|| = 1.5\}.$

Example

Let $X = \mathbb{R}^{n+1} \setminus 0$ and $Y = \mathbb{S}^n$ the unit sphere. Then $f : X \to Y$ with f(x) = x/||x|| and the inclusion $g : Y \hookrightarrow X$ form a homotopy equivalence via

$$H(x,t) = tx + (1-t)\frac{x}{||x||}$$

A topologists alphabet

Alphabet:

Equivalence classes of the English (i.e., Latin) alphabet (sans-serif)

Homeomorphism	Homotopy equivalence
	{A, R, D, O, P, Q} {B} {C, E, F, G, H, I, J, K, L, M, N, S, T, U, V, W, X, Y, Z}

The fundamental group

Definition

Let $f, g: I \to X$ two continuous paths in X. We call f and g **homotopic** relative to endpoints, if there is a continuous map $H: I \times I \to X$ such that H(x,0) = f(x), H(x,1) = g(x) and H(0,t) = g(0) = f(0), H(1,t) = g(1) = f(1). We write $f \simeq_{\partial I} g$ or $f \simeq g$.

Definition

Let X be a topological space and $x_0 \in X$. Let $\Omega(X, x_0) := \{f : I \to X | f(0) = f(1) = x_0\}$ the set of continuous **loops** in X. Homotopy relative to endpoints induces an equivalence realtion on $\Omega(X, x_0)$ and we can define the **fundamental group**

$$\pi_1(X,x_0) := \Omega(X,x_0)/_{\simeq}$$

イロト 不得下 イヨト イヨト 二日

The group operation in $\pi_1(X, x_0)$

Theorem

The fundamental group is a group!

We define the multiplication as the concatenation of loops. Let f, g be two loops in X, then

$$g \circ f := egin{cases} f(2t) & t \in [0, 1/2] \ g(2t-1) & t \in [1/2, 1] \end{cases}$$

Now $[g] \circ [f] := [g \circ f]$ for equivalence classes in $\pi_1(X, x_0)$. The constant loop $[x_0]$ is the unit element of this operation. The inverse is given by

$$\bar{f}(t):=f(1-t),$$

the path that goes in the inverse direction and $[f]^{-1} = [\bar{f}]$. This structure can be extended to paths, that can be concatenated!

We can look at the fundamental group as an asignement from the collection of pointed Topological spaces Top_* to the collection of groups Grp

$$(X, x_0) \mapsto \pi_1(X, x_0)$$

Further for any continuous map $\phi : X \to Y$ we get a group homomorphism $\pi_1(\phi) : \pi_1(X, x_0) \to \pi_1(Y, \phi(x_0))$ by $\pi_1(\phi)[f] = [\phi f]$ Categorically speaking we have a **functor** between the categories Top_{*} and Grp.

Invariance of the base point

Theorem

Let X be a pathconnected topological space and $x_0, y_0 \in X$. Then $\pi_1(X, x_0) \cong \pi_1(X, y_0)$

Proof.

We can choose a path g form x_0 to y_0 . The isomorphism $\pi_1(X, x_0) \to \pi_1(X, y_0)$ is given by conjugation with g, meaning for any loop f from x_0 to itself we map it to the loop gfg^{-1} from y_0 to itself. The inverse $\pi_1(X, y_0) \to \pi_1(X, x_0)$ is given by conjugation by g^{-1}

We therefore can omit the base point for path connected X and write $\pi_1(X)$

Homotopy invariance

Theorem

Let $\phi : X \to X$ be homotopic to the identity $\phi \simeq \operatorname{Id}_X$. Then $\pi_1(\phi) : \pi_1(X, x_0) \to \pi_1(X, \phi(x_0))$ is an iso.

Proof.

Let $H: X \times I \to Y$ the homotopy between Id $_X$ and ϕ . Then $H(x_0, .): I \to X$ is a path g in X from x_0 to $\phi(x_0)$. $\pi_1(\phi)$ is given by conjugation with this path.

$$\pi_1(\phi)[f] = [\phi f] = [gfg^{-1}]$$

This is again an iso.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Examples

Corrolary

Given a homotopy equivalence of path connected spaces $X \simeq Y$, f : X \rightarrow Y and g : Y \rightarrow X with fg $\simeq Id_Y$ and gf $\simeq Id_X$, we get that

$$\pi_1(X)\cong\pi_1(Y)$$

Example

The singleton space has trivial fundamental group $\pi_1(\{*\}) = 1$, hence any contractible space has trivial fundamental group too. Particularly $\pi_1(\mathbb{R}^n) = 1$.

Example

The annulus is homotopy equivalent to the circle hence they have the same fundamental group. Further: $\pi_1(\mathbb{R}^{n+1} \setminus 0) = \pi_1(\mathbb{S}^n)$.

イロト 不得 トイヨト イヨト 二日

Theorem

$$\pi_1(\mathbb{S}^1) = \mathbb{Z}$$

Proof.

We show this in two step:

- Any loop is homotopic to zⁿ : t → e^{2nπit}, for some n ∈ Z. (Surjective)
- **2** The z^n, z^m are not homotopic for $n \neq m$. (Injective)

Proof.

Let $U_1 = \{(x_1, x_2) \in \mathbb{S}^1 : x_2 \ge 0\}$ and $U_2 = \{(x_1, x_2) \in \mathbb{S}^1 : x_2 \le 0\}$, hence $U_1 \cap U_2 = \{(1, 0), (-1, 0)\}$. Let $f : I \to \mathbb{S}^1$ be a loop based at (1, 0) then I can be disected into n subintervals $I_k = [t_k, t_{k+1}]$ such that:

- $f|_{I_k}$ has image either in U_1 or U_2
- The images of two consecutive intervals only intersect in $\{(1,0),(-1,0)\}$

Hence f can be written as the product of paths $f_n \cdots f_2 f_1$.

Proof.

These paths f_n are maps $I \rightarrow U_i \cong I$ so there are only 6 possible homotopy types:

- $\bullet\,$ Constant maps to (1,0) or (-1,0) denoted by $1\,$
- A simple path in U_1 from (1,0) to (-1,0) or its inverse denoted by δ_1 ad δ_1^{-1} .
- A simple path in U_2 from (-1,0) to (1,0) or its inverse denoted by δ_2 ad δ_2^{-1} .

Notice that $[\delta_2 \delta_1] = [z^1]$. Since paths can only concatenated if they meet in the same point [f] can be simplified to either 1, $[\delta_2 \delta_1 \cdots \delta_2 \delta_1]$ or $[\delta_1^{-1} \delta_2^{-1} \cdots \delta_1^{-1} \delta_2^{-1}]$ hence there exists a number $n \in \mathbb{Z}$ such that $[f] \simeq [z^n]$.

< □ > < □ > < □ > < □ > < □ > < □ >

Proof.

To show that these simple loops are not homotopic in \mathbb{S}^1 we use **covering** spaces and liftings. Without proof we use that the map $\exp : t \mapsto e^{2\pi i t}$ maps \mathbb{R} onto \mathbb{S}^1 and for any loop f based at (1,0) we get a unique map $\tilde{f}: I \to \mathbb{R}$ such that $\tilde{f}(0) = 0$ and $\exp \circ \tilde{f} = f$. Particularly $\tilde{f}(1) \in \mathbb{Z}$. Further homotopic loops are maped to homotopic paths up to Endpoints. It is easy to compute that z^n is lifted to multiplication by n hence $\tilde{z^n}(1) = n$. Therefore $z^m \simeq z^n$ implies $\tilde{z^m} \simeq \tilde{z^n}$ and particularly $\tilde{z^m}(1) = m = n = \tilde{z^n}(1)$.

Of Shapes and Numbers

The fundamental group of higher spheres

Theorem

$$\pi_1(\mathbb{S}^n)=1, n\geq 2$$

Proof.

Let f be a loop in \mathbb{S}^n and $x \in \mathbb{S}^n$ not in the image of f. Then $\mathbb{S}^n \setminus \{x\} \cong \mathbb{R}^n$ by stereographical projection. We know that $\pi_1(\mathbb{R}^n) = 1$, hence f is homotopic to the constant loop in $\mathbb{S}^n \setminus \{x\}$. Therefore it is also homotopic to the constant loop in \mathbb{S}^n .

Notice that we cheated here by assuming $f(I) \neq \mathbb{S}^n$! Since we already saw space filling curves this can be the case, but we always can homotopically deform any curve away from a small circle.

(4) (日本)

A step closer

Theorem

$$\mathbb{R}^2 \not\cong \mathbb{R}^m, m \geq 3$$

Proof.

Suppose $\mathbb{R}^2 \cong \mathbb{R}^m$ via a homeomorphism ϕ . Then $\mathbb{R}^2 \setminus 0 \cong \mathbb{R}^m \setminus \phi(0)$. But $\mathbb{R}^2 \setminus 0 \equiv \mathbb{S}^1$ has nontrivial fundamental group, $\mathbb{R}^m \setminus \phi(0) \equiv \mathbb{S}^{m-1}$ has trivial fundamental group. A homeomorphism should preserve these properties. Hence we get a contradiction!

This argument fails to proof $\mathbb{R}^n \ncong \mathbb{R}^m$ for $n \ge 3! \Rightarrow$ Use Higher Homotopy groups!

The Marriage

The techniques developed here can be extended in the **field of algebraic topology**. It explores **higher homotopy groups** which can be seen as homtopy types of maps $\mathbb{S}^n \to X$ generalizing loops.

A more abstract, but more computable approach is **homology**. Here we also have a functor form Top to an algebraic category like groups Grp or algebras Alg.

Further beautiful things like **cohomology**, **stable homology**, **spectral sequences**, **K-Theory**....

"Homotopical Topology", Anatoli Formenko, Dimitri Fuchs, Springer Verlag.

"Algebraic Topology", Allen Hatcher:

https://pi.math.cornell.edu/ hatcher/AT/AT.pdf

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The higher homotopy groups of spheres

	π ₁	Π2	п3	π ₄	π ₅	π ₆	Π ₇	π ₈	πg	π ₁₀	π ₁₁	π ₁₂	π ₁₃	π ₁₄	π ₁₅
S 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S 1	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S ²	0	z	z	Z 2	Z 2	Z 12	Z 2	Z 2	Z ₃	Z ₁₅	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ³	0	0	z	Z 2	Z 2	Z ₁₂	Z 2	Z 2	Z 3	Z ₁₅	Z 2	Z 2 ²	Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ²	Z 2 ²
S ⁴	0	0	0	z	Z 2	Z 2	Z×Z ₁₂	Z 2 ²	Z ₂ ²	Z ₂₄ × Z ₃	Z 15	Z 2	Z 2 ³	Z ₁₂₀ × Z ₁₂ × Z ₂	Z ₈₄ × Z ₂ ⁵
S ⁵	0	0	0	0	z	Z 2	Z 2	Z ₂₄	Z 2	Z ₂	Z 2	Z 30	Z 2	Z 2 ³	Z ₇₂ × Z ₂
S ⁶	0	0	0	0	0	z	Z 2	Z 2	Z ₂₄	0	z	Z 2	Z 60	Z ₂₄ × Z ₂	Z 2 ³
S 7	0	0	0	0	0	0	z	Z 2	Z 2	Z ₂₄	0	0	Z 2	Z ₁₂₀	Z 2 ³
S ⁸	0	0	0	0	0	0	0	z	Z 2	Z 2	Z ₂₄	0	0	Z 2	Z × Z ₁₂₀

3

< □ > < @ >

Theorem (The Fundamental Theorem of Algebra)

Any polynomial $P \in \mathbb{C}[x]$ with coefficients in the field of complex numbers \mathbb{C} of degree $n \ge 1$ has a root in \mathbb{C} .

We proof this indirectely. So assuming the image of P is a subset of $\mathbb{C} \setminus 0$ we consider restrictions of P to concentric circles with radius R. $P|_{C_R} : C_R \to \mathbb{C} \setminus 0$ can be considered a loop in $\mathbb{C} \setminus 0 \cong \mathbb{R}^2 \setminus (1,0) \simeq \mathbb{S}^1$. We therefore want use the properties of the fundamental group $\pi_1(\mathbb{S}) \cong \mathbb{Z}$. Animation in Matematica

Proof.

Let wlog. $P(z) = z^n + ... + a_1z + a_0$ and suppose that $\operatorname{Im}(P) \subset \mathbb{C} \setminus 0$. Let $C_R := \{x \in \mathbb{C} : |x| = R\}$ and $P_R(t) := P(R \cdot z(t))$ the loop defined by the image of P_{C_R} , the restriction of the polynomial to this circle. Since polynomial eventually behave like their leading term we want to proof that there is an R sufficiently large such that $P_R \simeq z^n$. Let $R \in \mathbb{R}$ such that for all |z| = R we have $|z|^{n-j} > 2n|a_j|$. Equivalently

$$\frac{|z^n|}{2n} > |a_j z^j|$$

Proof.

Hence

$$\frac{|z^n|}{2} > |a_{n-1}z^{n-1}| + \ldots + |a_1z| + |a_0| \ge |a_{n-1}z^{n-1} + \ldots + a_1z + a_0|$$

Then for |z| = R

$$\begin{aligned} |P(z)| &= |z^{n} + ... + a_{1}z + a_{0}| \\ &\geq |z^{n}| - |a_{n-1}z^{n-1} + ... + a_{1}z + a_{0}| \\ &= \frac{|z^{n}|}{2} + \left(\frac{|z^{n}|}{2} - |a_{n-1}z^{n-1} + ... + a_{1}z + a_{0}|\right) \\ &> \frac{|z^{n}|}{2} \end{aligned}$$

Proof.

We define the homotopy $H: I \times I \to \mathbb{C}$ by $H(x, t) = tR^n z^n(x) + (1 - t)P_R(x)$ where $z^n(x) := e^{2\pi i n x}$. Now

$$H(x,t)| = |(R^{n}z^{n} + ... + a_{1}Rz + a_{0}) - t(a_{n-1}R^{n-1}z^{n-1} + ... + a_{1}Rz + a_{0})|$$

$$\geq \frac{|R^{n}|}{2} - |a_{n-1}R^{n-1}z^{n-1} + ... + a_{1}Rz + a_{0}|$$

$$> 0$$

So this is a homotopy from $R^n z^n$ to P_R in $\mathbb{C} \setminus 0 \simeq \mathbb{S}^1$! Hence $[P_R] = n \in \pi_1(\mathbb{S}) \cong \mathbb{Z}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof.

On the other hand P_R is homotopic to the constant map a_0 by $H(x,t) = P(tR \cdot z(x))$ because P is continuous and we assumed that it has no roots. Therefore $[P_R] = 0 \in \pi_1(\mathbb{S})$ hence we get a contradiction.

Thank you for your attention! I am looking forward to your questions!

< 47 ▶

э

G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer (Undergraduate Texts in Mathematics), 2013.

P. Großkopf, Intersecting the Twin Dragon with rational lines, Diploma thesis, TU Vienna (https://doi.org/10.34726/hss.2020.67762), 2020.

W. S. Massey, Algebraic Topology: An Introduction, Springer 1967.

E. H. Spanier, Algebraic Topology, McGraw-Hill Series in Higher Mathematics, 1966.

- A. Hatcher, Algebraic Topology" (https://pi.math.cornell.edu/ hatcher/AT/AT.pdf), Cambridge university press 2002.
- A. Formenko, D. Fuchs, Homotopical Topology, Springer, 2nd Ed. 2016.

< □ > < □ > < □ > < □ > < □ > < □ >