Of Shapes and Numbers
 A love story between Topology and Algebra

Paul Großkopf

ULB, FRIA scholarship at FNRS

September 1, 2022

What is Algebra?

- Oxford Dictionary: " algebra,noun:
the part of mathematics in which letters and other general symbols are used to represent numbers and quantities in formulae and equations"
- Wikipedia:
"In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures."
- What are algebraic structures then?

What are algebraic structures?

Definition

An algebraic structure consists of a set A and a collection of operations $\left(\mu_{1}, \ldots, \mu_{n}\right)$ of arities $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$:

$$
\mu_{k}: A^{a_{k}} \rightarrow A
$$

where $A^{a_{k}}$ denotes the a_{k}-fold catesian product of A with itself and $A^{0}=*$ is the singleton. Further we have a set of axioms, that these operations need to satisfy.

Examples of Algebraic structures

- Groups:
G is a set, $\left(\cdot, 1,{ }^{-1}\right)$ are operations with arities $(2,0,1)$ meaning:

$$
\begin{array}{ccc}
: G \times G \rightarrow G, & 1:\{*\} \rightarrow G, & -1: G \rightarrow G \\
(g, h) \mapsto g \cdot h & 1 \in G & g \mapsto g^{-1}
\end{array}
$$

satisfying associativity, unitality and inversibility

$$
\begin{array}{lll}
(g \cdot h) \cdot k=g \cdot(h \cdot k) & 1 \cdot g=g & g \cdot g^{-1}=1 \\
& g \cdot 1=g & g^{-1} \cdot g=1
\end{array}
$$

- Monoids M with operations $(\cdot, 1)$ and arities $(2,0)$ satisfying associativity, unitality.

Examples of Algebraic structures

- rings R with operations $(+, 0,-, \cdot, 1)$ and arities $(2,0,1,2,0)$ satisfying group axioms $(+)$, monoid axioms (\cdot) and distributivity.
- fields F with operations $\left(+, 0,-, \cdot, 1,{ }^{-1}\right)$ and arities $(2,0,1,2,0,1)$ satisfying two sets of group axioms and distributivity.
- lattices L with operations (\cup, \cap) with arities $(2,2)$ satisfying absorption law.
- bounded lattices L with operations $(\cup, \top, \cap, \perp)$ with arities $(2,0,2,0)$ a lattice with maximum and minimum .
- Boolean algebras
- Vector spaces
- Algebras A a vectorspace with a multiplication.
- associative Algebras
- ...

Equations and their solutions

From its first moments a big part of algebra was dedicated to find solutions to (polynomial) equations.

- Diophantine equations: Working over rings or particularly the integers \mathbb{Z}
- Formulae for solutions of polynomials in degree 2,3,4
- There are no Formulae for solutions of general polynomials in degree ≥ 5 ! (Galois theory)
- Algebraic Geometry: Exploring the geometry of these solutions sets

Theorem (The Fundamental Theorem of Algebra)

Any polynomial $P \in \mathbb{C}[x]$ with coefficients in the field of complex numbers \mathbb{C} of degree $n \geq 1$ has a root in \mathbb{C}.

What is Topology?

- Oxford Dictionary:
"topology,noun:
the way the parts of something are arranged and related"
- Wikipedia:
"In mathematics, topology (from the Greek words $\tau \circ \pi \circ \sigma$, 'place, location', and $\lambda o \gamma o \sigma$, 'study') is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. 11
- Mathematically: "Topology is the study of topological spaces and continuous functions."

What are topological spaces?

Definition

A topological space is a pair (X, τ), where X is a set and τ collection of subsets of X satisfying axioms:
(1) The empty set and X itself belong to $\tau: \emptyset \in \tau, X \in \tau$.
(2) Any finite intersection of members of τ is in τ :

$$
A_{1}, \ldots, A_{n} \in \tau \Rightarrow \bigcap_{i=1}^{n} A_{i} \in \tau
$$

(3) Any arbitrary union of members of τ is in τ :

$$
A_{i} \in \tau, i \in I \Rightarrow \bigcup_{i \in I} A_{i} \in \tau
$$

What are continuous maps?

Definition

Give two topological spaces $(X, \tau),(Y, \sigma)$ a continuous map is a map $f: X \rightarrow Y$ such that $f^{-1}(A) \in \tau, \forall A \in \sigma$.
If f is bijective and f as well as f^{-1} continuous, we call it a homeomorphism. In that case we call X and Y homeomorph and write $X \cong Y$

Homeomorphy is the notion of equality in topology, as isomorphy is in algebra.
Two homeomorphic spaces are generally speaking "the same" space!

Dougnuts and Coffee mugs

Strengths and Weaknesses of Topology

Topology is bad to describe:

- distances
- corners or edges
- size
- any sort of differential structure (tangents, normals...)

Topology is good to describe:

- The general shape of an object.
- The number of components or holes.

Picasso is a Topologist?

The Homeomorphy question

Given two topological spaces X, Y, we can ask wether they are homeomorph.
If yes \Rightarrow give an explicit homeomorphism!
If no \Rightarrow ? We need obstructions to the existence of such a homeomorphism!
Topology should be reasonably powerfull to distinguish objects of different dimensionality!

Conjecture

$$
\mathbb{R}^{n} \not \not \not \mathbb{R}^{m}
$$

Spacefilling curves

Definition

Let $I=[0,1] \subset \mathbb{R}$ be the unit interval. We call a continuous, surjective map $\gamma: I \rightarrow I \times I$ a spacefilling curve.

Does such a map exist? Peano, Hilbert and others began experimenting with such curves in the end of 19.century.

A short reminder of n-ary numbers

The way we represent any number x is by choosing a base b and digits $d_{k} \in 0,1, \ldots ., b-1$ such that

$$
x=\sum_{k=0}^{N} d_{k} b^{k}
$$

Particularly we use bases $b=10$ (decimal), $b=2$ (binary), $b=16$ (hexadecimal).
In our case we need base $b=4$, hence digits $0,1,2$ and 3 .

$$
\begin{array}{rcl}
1 \equiv 1 & 5 \equiv 11 & 1 / 4 \equiv 0.1 \\
2 \equiv 2 & 10 \equiv 22 & 1 / 16 \equiv 0.01 \\
3 \equiv 3 & 50 \equiv 3 * 16+2=302 & 1 / 3 \equiv 0 . \overline{1} \\
4 \equiv 10 & 100 \equiv 64+2 * 16+4=1210 & \pi \equiv 3.0210033312222 \ldots
\end{array}
$$

The Hilbert curve

Theorem
There exists a space filling curve.

The Hilbert curve

Proof.

We disect the square $I \times I$ in 4 parts $I_{0}, I_{1}, l_{2}, I_{3}$. We continue this process as indicated in the picture above to get 4^{n} little squares $I_{d_{1} d_{2} \ldots d_{n}}$ with $d_{k} \in\{0,1,2,3\}$. Hence for every point in $I \times I$ we get an infinite sequence of digits $d_{1} d_{2} \ldots d_{n} \ldots$. . On the other hand every number x in $I=[0,1]$ has a representation in base 4

$$
x=\sum_{k=1}^{\infty} d_{k} 4^{-k}
$$

Define $\gamma: I \rightarrow I \times I$ by $\gamma(x)=\bigcap_{k=1}^{\infty} I_{d_{1} \ldots d_{k}}$ the unique point with the same digit expansion. This can be shown to be well defined. (Digit expansions are not unique!)

The Hilbert curve

Proof.

γ is continuous:

$$
\forall \epsilon>0 \exists \delta>0: \forall t_{1}, t_{2}\left|t_{1}-t_{2}\right| \leq \delta \Rightarrow\left|\gamma\left(t_{1}\right)-\gamma\left(t_{2}\right)\right| \leq \epsilon
$$

Given an ϵ choose n such that $\sqrt{5} / 2^{n} \leq \epsilon$ and let $\delta=1 / 4^{n}$. If $\left|t_{1}-t_{2}\right| \leq 1 / 4^{n}$ that mean that there digit expansion only varies after the ($n-1$)-th digit and the n-th digit varies at most by 1 . Hence there images are in consecutive squares of sidelength $1 / 2^{n}$. The diagonal of this rectangle is $\sqrt{5} / 2^{n}$ hence $\left|\gamma\left(t_{1}\right)-\gamma\left(1_{2}\right)\right| \leq \epsilon$.

n-ary numbers and fractal geometry

The Hilbert curve is a so called iterated function system, which can be used to generate fractals. There exist a deep connection between these shapes and number systems. For example: complex numbers in base $-i-1$ with digits 0,1 and only negative exponents look like this:

"Measure, Topology, and Fractal Geometry", Gerald Edgar [1]
"Intersections of the Twin Dragon with rational lines", Paul Großkopf, TU Wien [2]

The end of topology?

Is there a homeomorphism $\mathbb{R} \rightarrow \mathbb{R}^{m}$?
Theorem
$\mathbb{R} \not \not \mathbb{R}^{m}$

Proof.

Suppose $\mathbb{R} \cong \mathbb{R}^{m}$ via a homeomorphism ϕ. Then $\mathbb{R} \backslash 0 \cong \mathbb{R}^{m} \backslash \phi(0)$. But $\mathbb{R} \backslash 0$ is not connected, $\mathbb{R}^{m} \backslash \phi(0)$ still is connected. A homeomorphism should preserve these properties. Hence we get a contradiction!

This argument fails to proof $\mathbb{R}^{n} \not \not \mathbb{R}^{m}$ for $n \geq 2$!

More powerful tool

Definition

Let $f, g: X \rightarrow Y$ two continous maps. We call f and g homotopic, if there is a continuous map $H: X \times I \rightarrow Y$ such that $H(x, 0)=f(x), H(x, 1)=g(x)$. We call H a homotopy and write $f \simeq g$.

Proposition

Homotopy is an equivalence relation.

Example

Example

Let X be the 1 -sphere $\mathbb{S}^{1}=\left\{x \in \mathbb{R}^{2}:\|x\|=1\right\}$ and Y the 2-disc $\mathbb{D}^{2}=\left\{x \in \mathbb{R}^{2}:\|x\| \leq 1\right\}$. Let $f(x)=x$ be the inclusion $\mathbb{S}^{1} \hookrightarrow \mathbb{D}^{2}$ and $g(x)=0$ the constant map sending everything to the origin. Then $H: \mathbb{S}^{1} \times I \rightarrow \mathbb{D}^{2}$ with $H(x, t)=t x$ is a homotopy between f and g.

Homotopy equivalences

Definition

Given two topological space X, Y. We call them homotopy equivalent, if there exists a maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ with $f g \simeq \mathrm{Id}_{Y}$ and $g f \simeq \operatorname{ld} x$.

Example

Let $X=\mathbb{R}^{n}$ and $Y=0$ the origin. Let $f: X \rightarrow Y$ be the constant zero map and $g: Y \hookrightarrow X$ the inclusion. Then $H(x, t)=t x$ is a homotopy from Id X to $g f$ and $f g=1 d{ }_{Y}$. We call X contractible if its homotopy equivalent to a point.

Homotopy equivalences

Example

The annulus $X=\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\| \leq 2\right\}$ is homotopy equivalent to the circle with radius $1.5 Y=\left\{x \in \mathbb{R}^{2}:\|x\|=1.5\right\}$.

Example

Let $X=\mathbb{R}^{n+1} \backslash 0$ and $Y=\mathbb{S}^{n}$ the unit sphere. Then $f: X \rightarrow Y$ with $f(x)=x /\|x\|$ and the inclusion $g: Y \hookrightarrow X$ form a homotopy equivalence via

$$
H(x, t)=t x+(1-t) \frac{x}{\|x\|}
$$

A topologists alphabet

Alphabet:
A B C D E F G H I J K L M N OP Q R S T U V W X Y Z
abcdefghijklmnopqrstuvwxyz
Alphabet (Topologist Version (with meme)):
O B I O I I I I I I I I I O O B O II I I I I I
ooloolgliillll69olllllllll
Equivalence classes of the English (i.e., Latin) alphabet (sans-serif)

Homeomorphism	Homotopy equivalence
$\{A, R\}\{B\}\{C, G, I, J, L, M, N, S, U, V, W, Z\}$	$\{A, R, D, O, P, Q\}\{B\}$
$\{D, O\}\{E, F, T, Y\}\{H, K\}\{P, Q\}\{X\}$	$\{C, E, F, G, H, I, J, K, L, M, N, S, T, U, V, W, X, Y, Z\}$

The fundamental group

Definition

Let $f, g: I \rightarrow X$ two continuous paths in X. We call f and g homotopic relative to endpoints, if there is a continuous map $H: I \times I \rightarrow X$ such that $H(x, 0)=f(x), H(x, 1)=g(x)$ and $H(0, t)=g(0)=f(0), H(1, t)=g(1)=f(1)$. We write $f \simeq_{\partial \jmath} g$ or $f \simeq g$.

Definition

Let X be a topological space and $x_{0} \in X$. Let $\Omega\left(X, x_{0}\right):=\left\{f: I \rightarrow X \mid f(0)=f(1)=x_{0}\right\}$ the set of continuous loops in X. Homotopy relative to endpoints induces an equivalence realtion on $\Omega\left(X, x_{0}\right)$ and we can define the fundamental group

$$
\pi_{1}\left(X, x_{0}\right):=\Omega\left(X, x_{0}\right) / \simeq
$$

The group operation in $\pi_{1}\left(X, x_{0}\right)$

Theorem

The fundamental group is a group!
We define the multiplication as the concatenation of loops. Let f, g be two loops in X, then

$$
g \circ f:= \begin{cases}f(2 t) & t \in[0,1 / 2] \tag{1}\\ g(2 t-1) & t \in[1 / 2,1]\end{cases}
$$

Now $[g] \circ[f]:=[g \circ f]$ for equivalence classes in $\pi_{1}\left(X, x_{0}\right)$. The constant loop $\left[x_{0}\right.$] is the unit element of this operation. The inverse is given by

$$
\bar{f}(t):=f(1-t),
$$

the path that goes in the inverse direction and $[f]^{-1}=[\bar{f}]$. This structure can be extended to paths, that can be concatenated!

The First Kiss

We can look at the fundamental group as an asignement from the collection of pointed Topological spaces Top_{*} to the collection of groups Grp

$$
\left(X, x_{0}\right) \mapsto \pi_{1}\left(X, x_{0}\right)
$$

Further for any continuous map $\phi: X \rightarrow Y$ we get a group homomorphism $\pi_{1}(\phi): \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, \phi\left(x_{0}\right)\right)$ by $\pi_{1}(\phi)[f]=[\phi f]$ Categorically speaking we have a functor between the categories Top ${ }_{*}$ and Grp.

Invariance of the base point

Theorem

Let X be a pathconnected topological space and $x_{0}, y_{0} \in X$. Then $\pi_{1}\left(X, x_{0}\right) \cong \pi_{1}\left(X, y_{0}\right)$

Proof.

We can choose a path g form x_{0} to y_{0}. The isomorphism $\pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, y_{0}\right)$ is given by conjugation with g, meaning for any loop f from x_{0} to itself we map it to the loop gfg^{-1} from y_{0} to itself. The inverse $\pi_{1}\left(X, y_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$ is given by conjugation by g^{-1}

We therefore can omit the base point for path connected X and write $\pi_{1}(X)$

Homotopy invariance

> Theorem
> Let $\phi: X \rightarrow X$ be homotopic to the identity $\phi \simeq \operatorname{Id} x$. Then $\pi_{1}(\phi): \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, \phi\left(x_{0}\right)\right)$ is an iso.

Proof.

Let $H: X \times I \rightarrow Y$ the homotopy between Id X and ϕ. Then $H\left(x_{0},.\right): I \rightarrow X$ is a path g in X from x_{0} to $\phi\left(x_{0}\right) . \pi_{1}(\phi)$ is given by conjugation with this path.

$$
\pi_{1}(\phi)[f]=[\phi f]=\left[g f g^{-1}\right]
$$

This is again an iso.

Examples

Corrolary

Given a homotopy equivalence of path connected spaces $X \simeq Y$, $f: X \rightarrow Y$ and $g: Y \rightarrow X$ with $f g \simeq \mathrm{Id}_{Y}$ and $g f \simeq \operatorname{ld} X$, we get that

$$
\pi_{1}(X) \cong \pi_{1}(Y)
$$

Example

The singleton space has trivial fundamental group $\pi_{1}(\{*\})=1$, hence any contractible space has trivial fundamental group too. Particularly $\pi_{1}\left(\mathbb{R}^{n}\right)=1$.

Example

The annulus is homotopy equivalent to the circle hence they have the same fundamental group. Further: $\pi_{1}\left(\mathbb{R}^{n+1} \backslash 0\right)=\pi_{1}\left(\mathbb{S}^{n}\right)$.

The fundamental group of the circle

Theorem

$$
\pi_{1}\left(\mathbb{S}^{1}\right)=\mathbb{Z}
$$

Proof.

We show this in two step:
(1) Any loop is homotopic to $z^{n}: t \mapsto e^{2 n \pi i t}$, for some $n \in \mathbb{Z}$. (Surjective)
(2) The z^{n}, z^{m} are not homotopic for $n \neq m$. (Injective)

The fundamental group of the circle

Proof.

Let $U_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{S}^{1}: x_{2} \geq 0\right\}$ and $U_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{S}^{1}: x_{2} \leq 0\right\}$, hence $U_{1} \cap U_{2}=\{(1,0),(-1,0)\}$. Let $f: I \rightarrow \mathbb{S}^{1}$ be a loop based at $(1,0)$ then I can be disected into n subintervals $I_{k}=\left[t_{k}, t_{k+1}\right]$ such that:

- $\left.f\right|_{I_{k}}$ has image either in U_{1} or U_{2}
- The images of two consecutive intervals only intersect in $\{(1,0),(-1,0)\}$
Hence f can be written as the product of paths $f_{n} \cdots f_{2} f_{1}$.

The fundamental group of the circle

Proof.

These paths f_{n} are maps $I \rightarrow U_{i} \cong I$ so there are only 6 possible homotopy types:

- Constant maps to $(1,0)$ or $(-1,0)$ denoted by 1
- A simple path in U_{1} from $(1,0)$ to $(-1,0)$ or its inverse denoted by δ_{1} ad δ_{1}^{-1}.
- A simple path in U_{2} from $(-1,0)$ to $(1,0)$ or its inverse denoted by δ_{2} ad δ_{2}^{-1}.
Notice that $\left[\delta_{2} \delta_{1}\right]=\left[z^{1}\right]$. Since paths can only concatenated if they meet in the same point [f] can be simplified to either $1,\left[\delta_{2} \delta_{1} \cdots \delta_{2} \delta_{1}\right.$] or $\left[\delta_{1}^{-1} \delta_{2}^{-1} \cdots \delta_{1}^{-1} \delta_{2}^{-1}\right]$ hence there exists a number $n \in \mathbb{Z}$ such that $[f] \simeq\left[z^{n}\right]$.

The fundamental group of the circle

Proof.

To show that these simple loops are not homotopic in \mathbb{S}^{1} we use covering spaces and liftings. Without proof we use that the map exp : $t \mapsto e^{2 \pi i t}$ maps \mathbb{R} onto \mathbb{S}^{1} and for any loop f based at $(1,0)$ we get a unique map $\tilde{f}: I \rightarrow \mathbb{R}$ such that $\tilde{f}(0)=0$ and $\exp \circ \tilde{f}=f$. Particularly $\tilde{f}(1) \in \mathbb{Z}$.
Further homotopic loops are maped to homotopic paths up to Endpoints.
It is easy to compute that z^{n} is lifted to multiplication by n hence $\tilde{z}^{n}(1)=n$. Therefore $z^{m} \simeq z^{n}$ implies $z^{m} \simeq \tilde{z^{n}}$ and particularly $z^{m}(1)=m=n=\tilde{z^{n}}(1)$.

The fundamental group of higher spheres

Theorem

$$
\pi_{1}\left(\mathbb{S}^{n}\right)=1, n \geq 2
$$

Proof.

Let f be a loop in \mathbb{S}^{n} and $x \in \mathbb{S}^{n}$ not in the image of f. Then $\mathbb{S}^{n} \backslash\{x\} \cong \mathbb{R}^{n}$ by stereographical projection. We know that $\pi_{1}\left(\mathbb{R}^{n}\right)=1$, hence f is homotopic to the constant loop in $\mathbb{S}^{n} \backslash\{x\}$. Therefore it is also homotopic to the constant loop in \mathbb{S}^{n}.

Notice that we cheated here by assuming $f(I) \neq \mathbb{S}^{n}$! Since we already saw space filling curves this can be the case, but we always can homotopically deform any curve away from a small circle.

A step closer

Theorem

$$
\mathbb{R}^{2} \neq \mathbb{R}^{m}, m \geq 3
$$

Proof.

Suppose $\mathbb{R}^{2} \cong \mathbb{R}^{m}$ via a homeomorphism ϕ. Then $\mathbb{R}^{2} \backslash 0 \cong \mathbb{R}^{m} \backslash \phi(0)$. But $\mathbb{R}^{2} \backslash 0 \equiv \mathbb{S}^{1}$ has nontrivial fundamental group, $\mathbb{R}^{m} \backslash \phi(0) \equiv \mathbb{S}^{m-1}$ has trivial fundamental group. A homeomorphism should preserve these properties. Hence we get a contradiction!

This argument fails to proof $\mathbb{R}^{n} \not \not \mathbb{R}^{m}$ for $n \geq 3!\Rightarrow$ Use Higher Homotopy groups!

The Marriage

The techniques developed here can be extended in the field of algebraic topology. It explores higher homotopy groups which can be seen as homtopy types of maps $\mathbb{S}^{n} \rightarrow X$ generalizing loops.
A more abstract, but more computable approach is homology. Here we also have a functor form Top to an algebraic category like groups Grp or algebras Alg.
Further beautiful things like cohomology, stable homology, spectral sequences, K-Theory....
"Homotopical Topology", Anatoli Formenko, Dimitri Fuchs, Springer Verlag.
"Algebraic Topology", Allen Hatcher:
https://pi.math.cornell.edu/ hatcher/AT/AT.pdf

The higher homotopy groups of spheres

	π_{1}	π_{2}	π_{3}	π_{4}	Π_{5}	π_{6}	Π_{7}	π_{8}	Π_{9}	π_{10}	π_{11}	π_{12}	π_{13}	Π_{14}	π_{15}
s^{0}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s^{1}	z	0	0	0	0	0	0	0	0	0	0	0	0	0	0
s^{2}	0	Z	Z	\mathbf{Z}_{2}	Z_{2}	\mathbf{Z}_{12}	Z_{2}	\mathbf{Z}_{2}	Z_{3}	\mathbf{Z}_{15}	Z_{2}	$\mathbf{z}_{2}{ }^{2}$	$\mathbf{Z}_{12} \times \mathbf{Z}_{2}$	$\mathbf{Z}_{84} \times \mathbf{Z}_{2}{ }^{2}$	$\mathbf{Z}_{2}{ }^{2}$
S^{3}	0	0	Z	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{12}	\mathbf{Z}_{2}	Z_{2}	Z_{3}	\mathbf{Z}_{15}	\mathbf{Z}_{2}	$\mathbf{Z}_{2}{ }^{2}$	$\mathbf{Z}_{12} \times \mathbf{Z}_{2}$	$\mathbf{Z}_{84} \times \mathbf{Z}_{2}{ }^{2}$	$\mathbf{Z}_{2}{ }^{2}$
s^{4}	0	0	0	Z	Z_{2}	Z_{2}	$\mathbf{Z} \times \mathbf{Z}_{12}$	$\mathbf{z}^{2}{ }^{2}$	$\mathbf{z}^{2}{ }^{\text {2 }}$	$\mathbf{Z}_{24} \times \mathbf{Z}_{3}$	\mathbf{Z}_{15}	Z_{2}	\mathbf{Z}^{3}	$\mathbf{Z}_{120} \times \mathbf{Z}_{12} \times \mathbf{Z}_{2}$	$\mathbf{Z}_{84} \times \mathbf{Z}_{2}{ }^{5}$
S^{5}	0	0	0	0	Z	Z_{2}	\mathbf{Z}_{2}	Z_{24}	Z_{2}	\mathbf{Z}_{2}	Z_{2}	\mathbf{Z}_{30}	\mathbf{Z}_{2}	$\mathrm{Z}_{2}{ }^{3}$	$\mathbf{Z}_{72} \times \mathbf{Z}_{2}$
S^{6}	0	0	0	0	0	Z	\mathbf{Z}_{2}	Z_{2}	\mathbf{Z}_{24}	0	Z	\mathbf{Z}_{2}	\mathbf{Z}_{60}	$\mathbf{Z}_{24} \times \mathbf{Z}_{2}$	$\mathbf{Z}_{2}{ }^{3}$
s^{7}	0	0	0	0	0	0	z	Z_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{24}	0	0	\mathbf{Z}_{2}	\mathbf{Z}_{120}	$\mathbf{z}_{2}{ }^{3}$
S^{8}	0	0	0	0	0	0	0	z	\mathbf{Z}_{2}	\mathbf{Z}_{2}	\mathbf{Z}_{24}	0	0	\mathbf{Z}_{2}	$\mathbf{Z} \times \mathbf{Z}_{120}$

Theorem (The Fundamental Theorem of Algebra)
Any polynomial $P \in \mathbb{C}[x]$ with coefficients in the field of complex numbers \mathbb{C} of degree $n \geq 1$ has a root in \mathbb{C}.

We proof this indirectely. So assuming the image of P is a subset of $\mathbb{C} \backslash 0$ we consider restrictions of P to concentric circles with radius R. $\left.P\right|_{C_{R}}: C_{R} \rightarrow \mathbb{C} \backslash 0$ can be considered a loop in $\mathbb{C} \backslash 0 \cong \mathbb{R}^{2} \backslash(1,0) \simeq \mathbb{S}^{1}$. We therefore want use the properties of the fundamental group $\pi_{1}(\mathbb{S}) \cong \mathbb{Z}$.

Animation in Matematica

The homotopical proof of the fundamental theorem of Algebra

Proof.

Let wlog. $P(z)=z^{n}+\ldots+a_{1} z+a_{0}$ and suppose that $\operatorname{Im}(P) \subset \mathbb{C} \backslash 0$.
Let $C_{R}:=\{x \in \mathbb{C}:|x|=R\}$ and $P_{R}(t):=P(R \cdot z(t))$ the loop defined by the image of $P_{C_{R}}$, the restriction of the polynomial to this circle. Since polynomial eventually behave like their leading term we want to proof that there is an R sufficiently large such that $P_{R} \simeq z^{n}$. Let $R \in \mathbb{R}$ such that for all $|z|=R$ we have $|z|^{n-j}>2 n\left|a_{j}\right|$. Equivalentely

$$
\frac{\left|z^{n}\right|}{2 n}>\left|a_{j} z^{j}\right|
$$

The homotopical proof of the fundamental theorem of Algebra

Proof.

Hence

$$
\frac{\left|z^{n}\right|}{2}>\left|a_{n-1} z^{n-1}\right|+\ldots+\left|a_{1} z\right|+\left|a_{0}\right| \geq\left|a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\right|
$$

Then for $|z|=R$

$$
\begin{aligned}
|P(z)| & =\left|z^{n}+\ldots+a_{1} z+a_{0}\right| \\
& \geq\left|z^{n}\right|-\left|a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\right| \\
& =\frac{\left|z^{n}\right|}{2}+\left(\frac{\left|z^{n}\right|}{2}-\left|a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}\right|\right) \\
& >\frac{\left|z^{n}\right|}{2}
\end{aligned}
$$

The homotopical proof of the fundamental theorem of Algebra

Proof.

We define the homotopy $H: I \times I \rightarrow \mathbb{C}$ by $H(x, t)=t R^{n} z^{n}(x)+(1-t) P_{R}(x)$ where $z^{n}(x):=e^{2 \pi i n x}$. Now

$$
\begin{aligned}
|H(x, t)| & =\mid\left(R^{n} z^{n}+\ldots+a_{1} R z+a_{0}\right) \\
& -t\left(a_{n-1} R^{n-1} z^{n-1}+\ldots+a_{1} R z+a_{0}\right) \mid \\
& \geq \frac{\left|R^{n}\right|}{2}-\left|a_{n-1} R^{n-1} z^{n-1}+\ldots+a_{1} R z+a_{0}\right| \\
& >0
\end{aligned}
$$

So this is a homotopy from $R^{n} z^{n}$ to P_{R} in $\mathbb{C} \backslash 0 \simeq \mathbb{S}^{1}$! Hence $\left[P_{R}\right]=n \in \pi_{1}(\mathbb{S}) \cong \mathbb{Z}$. Algebra

Proof.

On the other hand P_{R} is homotopic to the constant map a_{0} by $H(x, t)=P(t R \cdot z(x))$ because P is continuous and we assumed that it has no roots. Therefore $\left[P_{R}\right]=0 \in \pi_{1}(\mathbb{S})$ hence we get a contradiction.

Thank you for your attention!
 I am looking forward to your questions!

G. A. Edgar, Measure, Topology, and Fractal Geometry, Springer (Undergraduate Texts in Mathematics), 2013.
P. Großkopf, Intersecting the Twin Dragon with rational lines, Diploma thesis, TU Vienna (https://doi.org/10.34726/hss.2020.67762), 2020.
W. S. Massey, Algebraic Topology: An Introduction, Springer 1967.
E. H. Spanier, Algebraic Topology, McGraw-Hill Series in Higher Mathematics, 1966.
A. Hatcher, Algebraic Topology" (https://pi.math.cornell.edu/ hatcher/AT/AT.pdf), Cambridge university press 2002.
A. Formenko, D. Fuchs, Homotopical Topology, Springer, 2 ${ }^{\text {nd }}$ Ed. 2016.

